
Laboratory work 2 

Preparation of liquid samples with a desired concentration of analyte and its uncertainty 

 

Goal of the work: to learn preparation of liquid samples with a desired concentration of analyte 

and its uncertainty.  

 

Types of Error  

There are three types of limitations to measurements: 
1) Instrumental limitations 

Any measuring device can only be used to measure to with a certain degree of fineness. Our 

measurements are no better than the instruments we use to make them. 

2) Systematic errors and blunders 

These are caused by a mistake which does not change during the measurement. For example, if 

the platform balance you used to weigh something was not correctly set to zero with no weight on the pan, 

all your subsequent measurements of mass would be too large. Systematic errors do not enter into the 

uncertainty. They are either identified and eliminated or lurk in the background producing a shift from the 

true value. 

3) Random errors 

These arise from unnoticed variations in measurement technique, tiny changes in the experimental 

environment, etc. Random variations affect precision. Truly random effects average out if the results of a 

large number of trials are combined. 

 

Precision vs. Accuracy  

Measurements may be accurate, meaning that the measured value is the same as the true value; 

they may be precise, meaning that multiple measurements give nearly identical values (i.e., reproducible 

results); they may be both accurate and precise; or they may be neither accurate nor precise. The goal of 

scientists is to obtain measured values that are both accurate and precise. 
• A precise measurement is one where independent measurements of the same quantity closely cluster about 

a single value that may or may not be the correct value. 

• An accurate measurement is one where independent measurements cluster about the true value of the 

measured quantity. 

Systematic errors are not random and therefore can never cancel out. They affect the accuracy but 

not the precision of a measurement. 

 

 

 A. Low‐precision, Low‐accuracy: 

The average (the X) is not close to the center 

B. Low‐precision, High‐accuracy: 

The average is close to the true value 

C. High‐precision, Low‐accuracy: 

The average is not close to the true value 

D. High‐precision, High‐accuracy. 

 

 

Writing experimental numbers 

Uncertainty of Measurements 

Errors are quantified by associating an uncertainty with each measurement. For example, the best 

estimate of a length L is 2.59 cm, but due to uncertainty, the length might be as small as 2.57 cm or as large 

as 2.61 cm. L can be expressed with its uncertainty in two different ways: 
1. Absolute uncertainty 

Expressed in the units of the measured quantity: L = 2.59 ± 0.02 cm 

2. Percentage uncertainty 

Expressed as a percentage which is independent of the units 

Above, since 0.02/2.59 ≈1% we would write L = 7.7 cm ± 1% 

Significant figures 



Experimental numbers must be written in a way consistent with the precision to which they are 

known. In this context one speaks of significant figures or digits that have physical meaning. 

1. All definite digits and the first doubtful digit are considered significant. 

2. Leading zeros are not significant figures. 

Example: L = 2.31 cm has 3 significant figures. For L = 0.0231 m, the zeros serve to move the 

decimal point to the correct position. Leading zeros are not significant figures. 

3. Trailing zeros are significant figures: they indicate the number’s precision. 

4. One significant figure should be used to report the uncertainty or occasionally two, especially if 

the second figure is a five. 

Rounding numbers 

To keep the correct number of significant figures, numbers must be rounded off. The discarded 

digit is called the remainder. There are three rules for rounding: 
✓ Rule 1: If the remainder is less than 5, drop the last digit. 

Rounding to one decimal place: 5.346 → 5.3 

✓ Rule 2: If the remainder is greater than 5, increase the final digit by 1. 

Rounding to one decimal place: 5.798 → 5.8 

✓ Rule 3: If the remainder is exactly 5 then round the last digit to the closest even number. 

This is to prevent rounding bias. Remainders from 1 to 5 are rounded down half the time and remainders 

from 6 to 10 are rounded up the other half. 

Rounding to one decimal place: 3.55 → 3.6, also 3.65 → 3.6 

 

Statistical analysis of small data sets 

Repeated measurements allow you not only to obtain a better idea of the actual value, but also enable you to 

characterize the uncertainty of your measurement. Below are several quantities that are very useful in data analysis. 

The value obtained from a particular measurement is x. The measurement is repeated N times. Oftentimes in lab N is 

small, usually no more than 5 to 10. In this case, we use the formulae below: 

 

Mean (xavg) 
The average of all values of x (the “best” value of x) 

𝑥𝑎𝑣𝑔 =
𝑥1 + 𝑥2 +⋯+ 𝑥𝑁

𝑁
 

Range (R) 
The “spread” of the data set. This is the difference 

between the maximum and minimum values of x 
𝑅 = 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛 

Uncertainty in a 

measurement 

(Δx) 

Uncertainty in a single measurement of x. You 

determine this uncertainty by making multiple 

measurements. You know from your data that x lies 

somewhere between xmax and xmin 

∆𝑥 =
𝑅

2
=
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

2
 

Uncertainty 

in the mean 

(Δxavg) 

Uncertainty in the mean value of x. The actual value 

of x will be somewhere in a neighborhood around xavg. 

This neighborhood of values is the uncertainty in the 

mean 

∆𝑥𝑎𝑣𝑔 =
∆𝑥

√𝑁
=

𝑅

2√𝑁
 

Measured value 

(xm) 

The final reported value of a measurement of x 

contains both the average value and the uncertainty in 

the mean 

𝑥𝑚 = 𝑥𝑎𝑣𝑔 ± ∆𝑥𝑎𝑣𝑔 

 

The average value becomes more and more precise as the number of measurements N increases. Although 

the uncertainty of any single measurement is always Δx, the uncertainty in the mean Δxavg becomes smaller (by a 

factor of 1/√N) as more measurements are made. 

 

Statistical analysis of large data sets 

If only random errors affect a measurement, it can be shown mathematically that in the limit of an infinite 

number of measurements (N → ∞), the distribution of values follows a normal distribution (i.e. the bell curve on the 

Figure 4). This distribution has a peak at the mean value xavg and a width given by the standard deviation σ.  
 



 
Figure 4. Normal distribution 

 

Obviously, we never take an infinite number of measurements. However, for a large number of 

measurements, say, N~10-102 or more, measurements may be approximately normally distributed. In that event we 

use the formulae below: 

 

Mean (xavg) 
The average of all values of x (the “best” value 

of x). This is the same as for small data sets. 𝑥𝑎𝑣𝑔 =
∑ 𝑥𝑖
𝑁
𝑖=1

𝑁
 

Uncertainty in a 

measurement 

(Δx) 

Uncertainty in a single measurement of x. The 

vast majority of your data lies in the range 

xavg±σ 
∆𝑥 = 𝜎 = √

∑ (𝑥𝑖 − 𝑥𝑎𝑣𝑔)
2𝑁

𝑖=1

𝑁
 

Uncertainty 

in the mean 

(Δxavg) 

Uncertainty in the mean value of x. The actual 

value of x will be somewhere in a neighborhood 

around xavg. This neighborhood of values is the 

uncertainty in the mean. 

∆𝑥𝑎𝑣𝑔 =
𝜎

√𝑁
 

Measured value (xm) 

The final reported value of a measurement of x 

contains both the average value and the 

uncertainty in the mean. 

𝑥𝑚 = 𝑥𝑎𝑣𝑔 ± ∆𝑥𝑎𝑣𝑔 

 

Most of the time we will be using the formulae for small data sets. However, occasionally we perform 

experiments with enough data to compute a meaningful standard deviation. In those cases, we can take advantage of 

software that has programmed algorithms for computing xavg and σ. 

 

Addition/Subtraction 𝑧 = 𝑥 ± 𝑦 ∆𝑧 = √(∆𝑥)2 + (∆𝑦)2 

Multiplication 𝑧 = 𝑥𝑦 ∆𝑧 = |𝑥𝑦|√(
∆𝑥

𝑥
)
2

+ (
∆𝑦

𝑦
)
2

 

Division 𝑧 =
𝑥

𝑦
 ∆𝑧 = |

𝑥

𝑦
|√(

∆𝑥

𝑥
)
2

+ (
∆𝑦

𝑦
)
2

 

Power 𝑧 = 𝑥𝑛 ∆𝑧 = |𝑛|𝑥𝑛−1∆𝑥 

Multiplication by a 

constant 
𝑧 = 𝑐𝑥 ∆𝑧 = |𝑐|∆𝑥 

Function 𝑧 = 𝑓(𝑥, 𝑦) ∆𝑧 = √(
𝜕𝑓

𝜕𝑥
)
2

(∆𝑥)2 + (
𝜕𝑓

𝜕𝑦
)
2

(∆𝑦)2 

 

Working procedure 

Materials: 
Volumetric flasks (25-100 mL): 15-30 

Pipettes (1-5 mL, maybe 0.1 mL) 

Analytical balances 

Technical balances 

Micropipette (100-1000 µL) 

 



Task for laboratory work 

Prepare liquid samples with desired concentration of solutes in water with desired uncertainties 

(uncertainties of glassware are shown in Tables 4-5): 
1. Prepare solution with following concentration and its uncertainty from given solution of ethanol with 

concentration (95.4±0.4) vol.%: 

a. 10.0±0.2 ppm 

b. 1.50±0.03 mg/L 

2. Prepare solution with following concentration and its uncertainty from given NaCl with >99% purity:  

a. 10.0±0.2 ppm (w/w) 

b. 20.0±0.3 mg/L 

c. 100±2 μg/L 

d. 50.0±0.1 mmol/L 

e. 50±1 ppb 

3. Prepare solution with following concentration and its uncertainty from given NaH2PO4: 

a.150±2 mmol/L 

b. 100±1 mmol/L 

4. Prepare solution with following concentration and its uncertainty from given HCl (1.00±0.01) M: 

a.50±1 mmol/L 

5. Prepare solution with following concentration and its uncertainty from given solution of methanol 

(1.00±0.02) mg/L: 

a. 1.00±0.03 μg/L 

b. 30±1 ppb (v/v) 

6. Prepare solution with following concentration and its uncertainty from given K2Cr2O7 – 0.025-0.030 N 

(relative uncertainty <0.3%). 

7. Prepare solution with following concentration and its uncertainty from given 0.100±0.001 N (relative 

uncertainty <0.3%) Na2B4O7·10H2O (V = 100 mL). 

 

Table 4 - Uncertainties of glassware 

Rated capacity 

Permissible error 

Cylinders Graduated 

beakers 

Volumetric flasks 

1st class 2nd class 1st class 2nd class 

5 

10 

25 

50 

100 

200 

250 

300 

500 

1000 

2000 

0.10 

0.10 

0.25 

0.25 

0.50 

- 

1.25 

- 

2.50 

5.00 

10.00 

0.10 

0.20 

0.50 

1.00 

1.00 

- 

2.00 

- 

5.00 

10.00 

20.00 

- 

- 

- 

2.50 

5.00 

- 

5.00 

- 

12.50 

25.00 

- 

0.025 

0.025 

0.04 

0.06 

0.10 

0.15 

0.15 

0.20 

0.25 

0.40 

0.60 

0.05 

0.05 

0.08 

0.12 

0.20 

0.30 

0.30 

0.40 

0.50 

0.80 

1.20 

 

Table 5 - Uncertainties of pipettes 

Rated capacity Smallest division of the 

scale 

Permissible error of the volume 

1st class 2nd class 

0.5 

1 

2 

5 

10 

25 

0.01 

0.01 

0.02 

0.05 

0.1 

0.1 

0.2 

0.005 

0.006 

0.01 

0.03 

0.05 

0.1 

0.1 

- 

0.01 

0.02 

0.05 

0.1 

- 

0.2 

 
 


